

1967-2017 50 YEARS

Researching Noise and Overheating Tolerance

Professor David Waddington

Wed 21 June 2017

Abstract

- Aim is to investigate the indoor noise level from external sources that may be acceptable to occupants on a short-term basis when the alleviation of overheating is required.
- Preliminary studies of the human response to, and inter-dependence of, acoustic and thermal comfort in dwellings.
- Using laboratory studies on relatively small groups under closely controlled conditions.

Introduction

- Lack of guidance is resulting in residential developments with poor indoor environmental conditions where residents are not able to achieve thermal and acoustic comfort at the same time
- Giving rise to unnecessary sleep disturbance and adverse health effects due to poor indoor air quality in an increasing population of people.
- Therefore, there is a need to develop optimal solutions for noise and ventilation in residential developments

Introduction

- Collaborative, interdisciplinary project exploiting two unique world-class sets of expertise and experimental facilities from the University of Salford:
 - The Acoustics Test Laboratories
 - Energy House.
- Pilot study data and proof-of-principle for a large externally funded project

Methodology

- Human response using physiological measurements
 - heart rate,
 - respiratory rates and blood oxygen levels,
 - fidgeting
- Affective transfer
 - how the subjective rating of the noise changes due to changes in ventilation
 - determined by questionnaires and interview
- Cognitive impact
 - negative effect on task performance
 - measures the ability to inhibit irrelevant distractors

Physiological Measurements

- Interactive computer periphery
 - Microsoft Kinect
- Advantages:
 - totally non-invasive for a participant (no probes)
 - comprehensive selection of measurements
 - dynamic temporal measure
- Developing software
 - track body and limb movement
 - facial emotion recognition
 - eye tracking
 - head tracking
 - heart rate

Heart and Respiration Rates

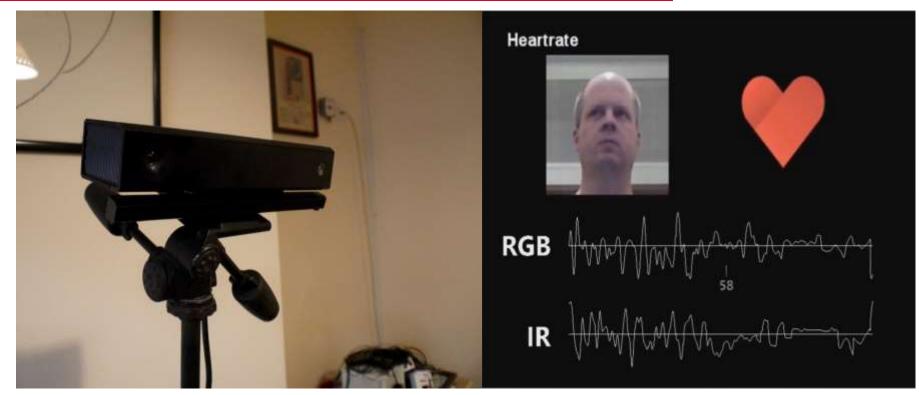


Fig 1 – The RGB and IR cameras can measure slight changes in skin tone intensity, measuring a participant's heart-rate and any increase from stress or discomfort.

Fidgeting

Fig 2 —Kinect Skeletal tracking allows highly accurate tracking of 25 points of the body. We shall be tracking knee, hand/arm and shoulders for indication of fidgeting due to an uncomfortable environment.

Positive and Negative Affect Schedule

This scale consists of a number of words that describe different feelings and emotions. Read each item and then mark the appropriate answer in the space next to that word. **Indicate to what extent you feel this way right now, that is, at the present moment.**

Use the following	scale to record	your answers:
	F	2

ose are following seare to record your anowers.						
1	2	3		4	5	
very slightly or not at all	a little	moderately		quite a bit	extremely	
		i	ntereste	d		
			listresse	d		
			excited			
			ıpset			
			strong			
			guilty			

Human Response Measurements

- Human responses of
 - cognitive (Flanker test)
 - physiological (HR, respiratory, fidgeting)
 - behavioural (Positive and Negative Affect Schedule)
- Human responses to
 - varying *noise* levels (road: 50dB, 60dB, and 70dB)
 - varying *heat* levels (21, 24, and 27 degrees Celsius)
 - combined effects of heat and noise

Thermal Comfort

- Measurements
 - Air and mean radiant temperature,
 - Humidity
 - Airflow
- Measured in accordance with ISO 7730:2005

Results and Analysis

- Performance on the cognitive task
 - Accuracy
 - Response times
- Physiological measurements
 - Heart rate
 - Level of movement (fidgeting)
 - Respiratory rate
- Subjective response
 - Positive affect and negative affect

Very Early Analysis

- There was a small but statistically significant effect due to noise level,
 - Highest noise condition (70dB) raised HR by ~3bpm
- There was a statistically significant interaction between noise and heat
 - This may be a sample size artefact, there were only three participants in the 24 and 27 degree conditions
- More analysis will be presented at ICSV24

Further Work HEMAC Sandpit, Glasgow 25 April 2017

- What noise characteristics are best suited for mechanical ventilation (MV) systems for sleep?
- Research Objectives
 - Identify acoustic triggers and mitigating action by occupants on their MV systems
 - Determine the ranges of ventilation system noise characteristics best-suited for bedrooms for sleep, living rooms, and bathrooms.
 - Diagnose problem noise sources and characteristics
 - Inform policy and practice through guidance
- Contractors minimise costs by providing minimum requirements of regulations

HEMAC Sandpit - Work packages

Work package	WP overview
1	Occupant perception survey of installed systems, including measurements of the noise levels and recording of noise signal for laboratory studies.
2	Larger-scale survey of as-built mechanical ventilation noise levels, to characterise the potential extent of the problem when correlated with data from occupant perception survey and lab tests.
3	Physical survey of problem sources and resultant noise characteristics: design, installation, operation and maintenance.
4	Laboratory study of subjective testing and optimisation of MV noise characteristics for sleep, and for relaxation, using measured source data.
5	Mapping pathways to impact - implications for policy and practice

- There is a need to develop optimal solutions for noise and ventilation in residential developments.
- A starting and important step to achieve optimization is to study the human response to, and inter-dependence of, acoustic and thermal comfort in dwellings.
- Related work is proposed to define noise characteristics best suited for mechanical ventilation (MV) systems for sleep

1967-2017 50 YEARS

Researching Noise and Overheating Tolerance

Professor David Waddington

Wed 21 June 2017